AI Applications News | Latest Applications for AI | AI News https://www.artificialintelligence-news.com/categories/ai-applications/ Artificial Intelligence News Fri, 02 May 2025 12:38:13 +0000 en-GB hourly 1 https://wordpress.org/?v=6.8.1 https://www.artificialintelligence-news.com/wp-content/uploads/2020/09/cropped-ai-icon-32x32.png AI Applications News | Latest Applications for AI | AI News https://www.artificialintelligence-news.com/categories/ai-applications/ 32 32 Google AMIE: AI doctor learns to ‘see’ medical images https://www.artificialintelligence-news.com/news/google-amie-ai-doctor-learns-to-see-medical-images/ https://www.artificialintelligence-news.com/news/google-amie-ai-doctor-learns-to-see-medical-images/#respond Fri, 02 May 2025 12:38:12 +0000 https://www.artificialintelligence-news.com/?p=106274 Google is giving its diagnostic AI the ability to understand visual medical information with its latest research on AMIE (Articulate Medical Intelligence Explorer). Imagine chatting with an AI about a health concern, and instead of just processing your words, it could actually look at the photo of that worrying rash or make sense of your […]

The post Google AMIE: AI doctor learns to ‘see’ medical images appeared first on AI News.

]]>
Google is giving its diagnostic AI the ability to understand visual medical information with its latest research on AMIE (Articulate Medical Intelligence Explorer).

Imagine chatting with an AI about a health concern, and instead of just processing your words, it could actually look at the photo of that worrying rash or make sense of your ECG printout. That’s what Google is aiming for.

We already knew AMIE showed promise in text-based medical chats, thanks to earlier work published in Nature. But let’s face it, real medicine isn’t just about words.

Doctors rely heavily on what they can see – skin conditions, readings from machines, lab reports. As the Google team rightly points out, even simple instant messaging platforms “allow static multimodal information (e.g., images and documents) to enrich discussions.”

Text-only AI was missing a huge piece of the puzzle. The big question, as the researchers put it, was “Whether LLMs can conduct diagnostic clinical conversations that incorporate this more complex type of information.”

Google teaches AMIE to look and reason

Google’s engineers have beefed up AMIE using their Gemini 2.0 Flash model as the brains of the operation. They’ve combined this with what they call a “state-aware reasoning framework.” In plain English, this means the AI doesn’t just follow a script; it adapts its conversation based on what it’s learned so far and what it still needs to figure out.

It’s close to how a human clinician works: gathering clues, forming ideas about what might be wrong, and then asking for more specific information – including visual evidence – to narrow things down.

“This enables AMIE to request relevant multimodal artifacts when needed, interpret their findings accurately, integrate this information seamlessly into the ongoing dialogue, and use it to refine diagnoses,” Google explains.

Think of the conversation flowing through stages: first gathering the patient’s history, then moving towards diagnosis and management suggestions, and finally follow-up. The AI constantly assesses its own understanding, asking for that skin photo or lab result if it senses a gap in its knowledge.

To get this right without endless trial-and-error on real people, Google built a detailed simulation lab.

Google created lifelike patient cases, pulling realistic medical images and data from sources like the PTB-XL ECG database and the SCIN dermatology image set, adding plausible backstories using Gemini. Then, they let AMIE ‘chat’ with simulated patients within this setup and automatically check how well it performed on things like diagnostic accuracy and avoiding errors (or ‘hallucinations’).

The virtual OSCE: Google puts AMIE through its paces

The real test came in a setup designed to mirror how medical students are assessed: the Objective Structured Clinical Examination (OSCE).

Google ran a remote study involving 105 different medical scenarios. Real actors, trained to portray patients consistently, interacted either with the new multimodal AMIE or with actual human primary care physicians (PCPs). These chats happened through an interface where the ‘patient’ could upload images, just like you might in a modern messaging app.

Afterwards, specialist doctors (in dermatology, cardiology, and internal medicine) and the patient actors themselves reviewed the conversations.

The human doctors scored everything from how well history was taken, the accuracy of the diagnosis, the quality of the suggested management plan, right down to communication skills and empathy—and, of course, how well the AI interpreted the visual information.

Surprising results from the simulated clinic

Here’s where it gets really interesting. In this head-to-head comparison within the controlled study environment, Google found AMIE didn’t just hold its own—it often came out ahead.

The AI was rated as being better than the human PCPs at interpreting the multimodal data shared during the chats. It also scored higher on diagnostic accuracy, producing differential diagnosis lists (the ranked list of possible conditions) that specialists deemed more accurate and complete based on the case details.

Specialist doctors reviewing the transcripts tended to rate AMIE’s performance higher across most areas. They particularly noted “the quality of image interpretation and reasoning,” the thoroughness of its diagnostic workup, the soundness of its management plans, and its ability to flag when a situation needed urgent attention.

Perhaps one of the most surprising findings came from the patient actors: they often found the AI to be more empathetic and trustworthy than the human doctors in these text-based interactions.

And, on a critical safety note, the study found no statistically significant difference between how often AMIE made errors based on the images (hallucinated findings) compared to the human physicians.

Technology never stands still, so Google also ran some early tests swapping out the Gemini 2.0 Flash model for the newer Gemini 2.5 Flash.

Using their simulation framework, the results hinted at further gains, particularly in getting the diagnosis right (Top-3 Accuracy) and suggesting appropriate management plans.

While promising, the team is quick to add a dose of realism: these are just automated results, and “rigorous assessment through expert physician review is essential to confirm these performance benefits.”

Important reality checks

Google is commendably upfront about the limitations here. “This study explores a research-only system in an OSCE-style evaluation using patient actors, which substantially under-represents the complexity… of real-world care,” they state clearly. 

Simulated scenarios, however well-designed, aren’t the same as dealing with the unique complexities of real patients in a busy clinic. They also stress that the chat interface doesn’t capture the richness of a real video or in-person consultation.

So, what’s the next step? Moving carefully towards the real world. Google is already partnering with Beth Israel Deaconess Medical Center for a research study to see how AMIE performs in actual clinical settings with patient consent.

The researchers also acknowledge the need to eventually move beyond text and static images towards handling real-time video and audio—the kind of interaction common in telehealth today.

Giving AI the ability to ‘see’ and interpret the kind of visual evidence doctors use every day offers a glimpse of how AI might one day assist clinicians and patients. However, the path from these promising findings to a safe and reliable tool for everyday healthcare is still a long one that requires careful navigation.

(Photo by Alexander Sinn)

See also: Are AI chatbots really changing the world of work?

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post Google AMIE: AI doctor learns to ‘see’ medical images appeared first on AI News.

]]>
https://www.artificialintelligence-news.com/news/google-amie-ai-doctor-learns-to-see-medical-images/feed/ 0
Are AI chatbots really changing the world of work? https://www.artificialintelligence-news.com/news/are-ai-chatbots-really-changing-the-world-of-work/ https://www.artificialintelligence-news.com/news/are-ai-chatbots-really-changing-the-world-of-work/#respond Fri, 02 May 2025 09:54:32 +0000 https://www.artificialintelligence-news.com/?p=106266 We’ve heard endless predictions about how AI chatbots will transform work, but data paints a much calmer picture—at least for now. Despite huge and ongoing advancements in generative AI, the massive wave it was supposed to create in the world of work looks more like a ripple so far. Researchers Anders Humlum (University of Chicago) […]

The post Are AI chatbots really changing the world of work? appeared first on AI News.

]]>
We’ve heard endless predictions about how AI chatbots will transform work, but data paints a much calmer picture—at least for now.

Despite huge and ongoing advancements in generative AI, the massive wave it was supposed to create in the world of work looks more like a ripple so far.

Researchers Anders Humlum (University of Chicago) and Emilie Vestergaard (University of Copenhagen) didn’t just rely on anecdotes. They dug deep, connecting responses from two big surveys (late 2023 and 2024) with official, detailed records about jobs and pay in Denmark.

The pair zoomed in on around 25,000 people working in 7,000 different places, covering 11 jobs thought to be right in the path of AI disruption.   

Everyone’s using AI chatbots for work, but where are the benefits?

What they found confirms what many of us see: AI chatbots are everywhere in Danish workplaces now. Most bosses are actually encouraging staff to use them, a real turnaround from the early days when companies were understandably nervous about things like data privacy.

Almost four out of ten employers have even rolled out their own in-house chatbots, and nearly a third of employees have had some formal training on these tools.   

When bosses gave the nod, the number of staff using chatbots practically doubled, jumping from 47% to 83%. It also helped level the playing field a bit. That gap between men and women using chatbots? It shrank noticeably when companies actively encouraged their use, especially when they threw in some training.

So, the tools are popular, companies are investing, people are getting trained… but the big economic shift? It seems to be missing in action.

Using statistical methods to compare people who used AI chatbots for work with those who didn’t, both before and after ChatGPT burst onto the scene, the researchers found… well, basically nothing.

“Precise zeros,” the researchers call their findings. No significant bump in pay, no change in recorded work hours, across all 11 job types they looked at. And they’re pretty confident about this – the numbers rule out any average effect bigger than just 1%.

This wasn’t just a blip, either. The lack of impact held true even for the keen beans who jumped on board early, those using chatbots daily, or folks working where the boss was actively pushing the tech.

Looking at whole workplaces didn’t change the story; places with lots of chatbot users didn’t see different trends in hiring, overall wages, or keeping staff compared to places using them less.

Productivity gains: More of a gentle nudge than a shove

Why the big disconnect? Why all the hype and investment if it’s not showing up in paychecks or job stats? The study flags two main culprits: the productivity boosts aren’t as huge as hoped in the real world, and what little gains there are aren’t really making their way into wages.

Sure, people using AI chatbots for work felt they were helpful. They mentioned better work quality and feeling more creative. But the number one benefit? Saving time.

However, when the researchers crunched the numbers, the average time saved was only about 2.8% of a user’s total work hours. That’s miles away from the huge 15%, 30%, even 50% productivity jumps seen in controlled lab-style experiments (RCTs) involving similar jobs.

Why the difference? A few things seem to be going on. Those experiments often focus on jobs or specific tasks where chatbots really shine (like coding help or basic customer service responses). This study looked at a wider range, including jobs like teaching where the benefits might be smaller.

The researchers stress the importance of what they call “complementary investments”. People whose companies encouraged chatbot use and provided training actually did report bigger benefits – saving more time, improving quality, and feeling more creative. This suggests that just having the tool isn’t enough; you need the right support and company environment to really unlock its potential.

And even those modest time savings weren’t padding wallets. The study reckons only a tiny fraction – maybe 3% to 7% – of the time saved actually showed up as higher earnings. It might be down to standard workplace inertia, or maybe it’s just harder to ask for a raise based on using a tool your boss hasn’t officially blessed, especially when many people started using them off their own bat.

Making new work, not less work

One fascinating twist is that AI chatbots aren’t just about doing old work tasks faster. They seem to be creating new tasks too. Around 17% of people using them said they had new workloads, mostly brand new types of tasks.

This phenomenon happened more often in workplaces that encouraged chatbot use. It even spilled over to people not using the tools – about 5% of non-users reported new tasks popping up because of AI, especially teachers having to adapt assignments or spot AI-written homework.   

What kind of new tasks? Things like figuring out how to weave AI into daily workflows, drafting content with AI help, and importantly, dealing with the ethical side and making sure everything’s above board. It hints that companies are still very much in the ‘figuring it out’ phase, spending time and effort adapting rather than just reaping instant rewards.

What’s the verdict on the work impact of AI chatbots?

The researchers are careful not to write off generative AI completely. They see pathways for it to become more influential over time, especially as companies get better at integrating it and maybe as those “new tasks” evolve.

But for now, their message is clear: the current reality doesn’t match the hype about a massive, immediate job market overhaul.

“Despite rapid adoption and substantial investments… our key finding is that AI chatbots have had minimal impact on productivity and labor market outcomes to date,” the researchers conclude.   

It brings to mind that old quote about the early computer age: seen everywhere, except in the productivity stats. Two years on from ChatGPT’s launch kicking off the fastest tech adoption we’ve ever seen, its actual mark on jobs and pay looks surprisingly light.

The revolution might still be coming, but it seems to be taking its time.   

See also: Claude Integrations: Anthropic adds AI to your favourite work tools

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post Are AI chatbots really changing the world of work? appeared first on AI News.

]]>
https://www.artificialintelligence-news.com/news/are-ai-chatbots-really-changing-the-world-of-work/feed/ 0
Claude Integrations: Anthropic adds AI to your favourite work tools https://www.artificialintelligence-news.com/news/claude-integrations-anthropic-adds-ai-favourite-work-tools/ https://www.artificialintelligence-news.com/news/claude-integrations-anthropic-adds-ai-favourite-work-tools/#respond Thu, 01 May 2025 17:02:33 +0000 https://www.artificialintelligence-news.com/?p=106258 Anthropic just launched ‘Integrations’ for Claude that enables the AI to talk directly to your favourite daily work tools. In addition, the company has launched a beefed-up ‘Advanced Research’ feature for digging deeper than ever before. Starting with Integrations, the feature builds on a technical standard Anthropic released last year (the Model Context Protocol, or […]

The post Claude Integrations: Anthropic adds AI to your favourite work tools appeared first on AI News.

]]>
Anthropic just launched ‘Integrations’ for Claude that enables the AI to talk directly to your favourite daily work tools. In addition, the company has launched a beefed-up ‘Advanced Research’ feature for digging deeper than ever before.

Starting with Integrations, the feature builds on a technical standard Anthropic released last year (the Model Context Protocol, or MCP), but makes it much easier to use. Before, setting this up was a bit technical and local. Now, developers can build secure bridges allowing Claude to connect safely with apps over the web or on your desktop.

For end-users of Claude, this means you can now hook it up to a growing list of popular work software. Right out of the gate, they’ve included support for ten big names: Atlassian’s Jira and Confluence (hello, project managers and dev teams!), the automation powerhouse Zapier, Cloudflare, customer comms tool Intercom, plus Asana, Square, Sentry, PayPal, Linear, and Plaid. Stripe and GitLab are joining the party soon.

So, what’s the big deal? The real advantage here is context. When Claude can see your project history in Jira, read your team’s knowledge base in Confluence, or check task updates in Asana, it stops guessing and starts understanding what you’re working on.

“When you connect your tools to Claude, it gains deep context about your work—understanding project histories, task statuses, and organisational knowledge—and can take actions across every surface,” explains Anthropic.

They add, “Claude becomes a more informed collaborator, helping you execute complex projects in one place with expert assistance at every step.”

Let’s look at what this means in practice. Connect Zapier, and you suddenly give Claude the keys to thousands of apps linked by Zapier’s workflows. You could just ask Claude, conversationally, to trigger a complex sequence – maybe grab the latest sales numbers from HubSpot, check your calendar, and whip up some meeting notes, all without you lifting a finger in those apps.

For teams using Atlassian’s Jira and Confluence, Claude could become a serious helper. Think drafting product specs, summarising long Confluence documents so you don’t have to wade through them, or even creating batches of linked Jira tickets at once. It might even spot potential roadblocks by analysing project data.

And if you use Intercom for customer chats, this integration could be a game-changer. Intercom’s own AI assistant, Fin, can now work with Claude to do things like automatically create a bug report in Linear if a customer flags an issue. You could also ask Claude to sift through your Intercom chat history to spot patterns, help debug tricky problems, or summarise what customers are saying – making the whole journey from feedback to fix much smoother.

Anthropic is also making it easier for developers to build even more of these connections. They reckon that using their tools (or platforms like Cloudflare that handle the tricky bits like security and setup), developers can whip up a custom Integration with Claude in about half an hour. This could mean connecting Claude to your company’s unique internal systems or specialised industry software.

Beyond tool integrations, Claude gets a serious research upgrade

Alongside these new connections, Anthropic has given Claude’s Research feature a serious boost. It could already search the web and your Google Workspace files, but the new ‘Advanced Research’ mode is built for when you need to dig really deep.

Flip the switch for this advanced mode, and Claude tackles big questions differently. Instead of just one big search, it intelligently breaks your request down into smaller chunks, investigates each part thoroughly – using the web, your Google Docs, and now tapping into any apps you’ve connected via Integrations – before pulling it all together into a detailed report.

Now, this deeper digging takes a bit more time. While many reports might only take five to fifteen minutes, Anthropic says the really complex investigations could have Claude working away for up to 45 minutes. That might sound like a while, but compare it to the hours you might spend grinding through that research manually, and it starts to look pretty appealing.

Importantly, you can trust the results. When Claude uses information from any source – whether it’s a website, an internal doc, a Jira ticket, or a Confluence page – it gives you clear links straight back to the original. No more wondering where the AI got its information from; you can check it yourself.

These shiny new Integrations and the Advanced Research mode are rolling out now in beta for folks on Anthropic’s paid Max, Team, and Enterprise plans. If you’re on the Pro plan, don’t worry – access is coming your way soon.

Also worth noting: the standard web search feature inside Claude is now available everywhere, for everyone on any paid Claude.ai plan (Pro and up). No more geographical restrictions on that front.

Putting it all together, these updates and integrations show Anthropic is serious about making Claude genuinely useful in a professional context. By letting it plug directly into the tools we already use and giving it more powerful ways to analyse information, they’re pushing Claude towards being less of a novelty and more of an essential part of the modern toolkit.

(Image credit: Anthropic)

See also: Baidu ERNIE X1 and 4.5 Turbo boast high performance at low cost

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post Claude Integrations: Anthropic adds AI to your favourite work tools appeared first on AI News.

]]>
https://www.artificialintelligence-news.com/news/claude-integrations-anthropic-adds-ai-favourite-work-tools/feed/ 0
Meta beefs up AI security with new Llama tools  https://www.artificialintelligence-news.com/news/meta-beefs-up-ai-security-new-llama-tools/ https://www.artificialintelligence-news.com/news/meta-beefs-up-ai-security-new-llama-tools/#respond Wed, 30 Apr 2025 13:35:22 +0000 https://www.artificialintelligence-news.com/?p=106233 If you’re building with AI, or trying to defend against the less savoury side of the technology, Meta just dropped new Llama security tools. The improved security tools for the Llama AI models arrive alongside fresh resources from Meta designed to help cybersecurity teams harness AI for defence. It’s all part of their push to […]

The post Meta beefs up AI security with new Llama tools  appeared first on AI News.

]]>
If you’re building with AI, or trying to defend against the less savoury side of the technology, Meta just dropped new Llama security tools.

The improved security tools for the Llama AI models arrive alongside fresh resources from Meta designed to help cybersecurity teams harness AI for defence. It’s all part of their push to make developing and using AI a bit safer for everyone involved.

Developers working with the Llama family of models now have some upgraded kit to play with. You can grab these latest Llama Protection tools directly from Meta’s own Llama Protections page, or find them where many developers live: Hugging Face and GitHub.

First up is Llama Guard 4. Think of it as an evolution of Meta’s customisable safety filter for AI. The big news here is that it’s now multimodal so it can understand and apply safety rules not just to text, but to images as well. That’s crucial as AI applications get more visual. This new version is also being baked into Meta’s brand-new Llama API, which is currently in a limited preview.

Then there’s LlamaFirewall. This is a new piece of the puzzle from Meta, designed to act like a security control centre for AI systems. It helps manage different safety models working together and hooks into Meta’s other protection tools. Its job? To spot and block the kind of risks that keep AI developers up at night – things like clever ‘prompt injection’ attacks designed to trick the AI, potentially dodgy code generation, or risky behaviour from AI plug-ins.

Meta has also given its Llama Prompt Guard a tune-up. The main Prompt Guard 2 (86M) model is now better at sniffing out those pesky jailbreak attempts and prompt injections. More interestingly, perhaps, is the introduction of Prompt Guard 2 22M.

Prompt Guard 2 22M is a much smaller, nippier version. Meta reckons it can slash latency and compute costs by up to 75% compared to the bigger model, without sacrificing too much detection power. For anyone needing faster responses or working on tighter budgets, that’s a welcome addition.

But Meta isn’t just focusing on the AI builders; they’re also looking at the cyber defenders on the front lines of digital security. They’ve heard the calls for better AI-powered tools to help in the fight against cyberattacks, and they’re sharing some updates aimed at just that.

The CyberSec Eval 4 benchmark suite has been updated. This open-source toolkit helps organisations figure out how good AI systems actually are at security tasks. This latest version includes two new tools:

  • CyberSOC Eval: Built with the help of cybersecurity experts CrowdStrike, this framework specifically measures how well AI performs in a real Security Operation Centre (SOC) environment. It’s designed to give a clearer picture of AI’s effectiveness in threat detection and response. The benchmark itself is coming soon.
  • AutoPatchBench: This benchmark tests how good Llama and other AIs are at automatically finding and fixing security holes in code before the bad guys can exploit them.

To help get these kinds of tools into the hands of those who need them, Meta is kicking off the Llama Defenders Program. This seems to be about giving partner companies and developers special access to a mix of AI solutions – some open-source, some early-access, some perhaps proprietary – all geared towards different security challenges.

As part of this, Meta is sharing an AI security tool they use internally: the Automated Sensitive Doc Classification Tool. It automatically slaps security labels on documents inside an organisation. Why? To stop sensitive info from walking out the door, or to prevent it from being accidentally fed into an AI system (like in RAG setups) where it could be leaked.

They’re also tackling the problem of fake audio generated by AI, which is increasingly used in scams. The Llama Generated Audio Detector and Llama Audio Watermark Detector are being shared with partners to help them spot AI-generated voices in potential phishing calls or fraud attempts. Companies like ZenDesk, Bell Canada, and AT&T are already lined up to integrate these.

Finally, Meta gave a sneak peek at something potentially huge for user privacy: Private Processing. This is new tech they’re working on for WhatsApp. The idea is to let AI do helpful things like summarise your unread messages or help you draft replies, but without Meta or WhatsApp being able to read the content of those messages.

Meta is being quite open about the security side, even publishing their threat model and inviting security researchers to poke holes in the architecture before it ever goes live. It’s a sign they know they need to get the privacy aspect right.

Overall, it’s a broad set of AI security announcements from Meta. They’re clearly trying to put serious muscle behind securing the AI they build, while also giving the wider tech community better tools to build safely and defend effectively.

See also: Alarming rise in AI-powered scams: Microsoft reveals $4B in thwarted fraud

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post Meta beefs up AI security with new Llama tools  appeared first on AI News.

]]>
https://www.artificialintelligence-news.com/news/meta-beefs-up-ai-security-new-llama-tools/feed/ 0
Duolingo shifts to AI-first model, cutting contractor roles https://www.artificialintelligence-news.com/news/duolingo-shifts-to-ai-first-model-cutting-contractor-roles/ https://www.artificialintelligence-news.com/news/duolingo-shifts-to-ai-first-model-cutting-contractor-roles/#respond Wed, 30 Apr 2025 11:23:21 +0000 https://www.artificialintelligence-news.com/?p=106215 Duolingo is restructuring parts of its workforce as it shifts toward becoming an “AI-first” company, according to an internal memo from CEO and co-founder Luis von Ahn that was later shared publicly on the company’s LinkedIn page. The memo outlines a series of planned changes to how the company operates, with a particular focus on […]

The post Duolingo shifts to AI-first model, cutting contractor roles appeared first on AI News.

]]>
Duolingo is restructuring parts of its workforce as it shifts toward becoming an “AI-first” company, according to an internal memo from CEO and co-founder Luis von Ahn that was later shared publicly on the company’s LinkedIn page.

The memo outlines a series of planned changes to how the company operates, with a particular focus on how artificial intelligence will be used to streamline processes, reduce manual tasks, and scale content development.

Duolingo will gradually stop using contractors for work that AI can take over. The company will also begin evaluating job candidates and employee performance partly based on how they use AI tools. Von Ahn said that headcount increases will only be considered when a team can no longer automate parts of its work effectively.

“Being AI-first means we will need to rethink much of how we work. Making minor tweaks to systems designed for humans won’t get us there,” von Ahn wrote. “AI helps us get closer to our mission. To teach well, we need to create a massive amount of content, and doing that manually doesn’t scale.”

One of the main drivers behind the shift is the need to produce content more quickly, and Von Ahn says that producing new content manually would take decades. By integrating AI into its workflow, Duolingo has replaced processes he described as slow and manual those that are more efficient and automated.

The company has also used AI to develop features that weren’t previously feasible such as an AI-powered video call feature, which aims to provide tutoring to the level of human instructors. According to von Ahn, tools like this move the Duolingo platform closer to its mission – to deliver language instruction globally.

The internal shift is not limited to content creation or product development. Von Ahn said most business functions will be expected to rethink how they operate and identify opportunities to embed AI into daily work. Teams will be encouraged to adopt what he called “constructive constraints” – policies that push them to prioritise automation before requesting additional resources.

The move echoes a broader trend in the tech industry. Shopify CEO Tobi Lütke recently gave a similar directive to employees, urging them to demonstrate why tasks couldn’t be completed with AI before requesting new headcount. Both companies appear to be setting new expectations for how teams manage growth in an AI-dominated environment.

Duolingo’s leadership maintains the changes are not intended to reduce its focus on employee well-being, and the company will continue to support staff with training, mentorship, and tools designed to help employees adapt to new workflows. The goal, he wrote, is not to replace staff with AI, but to eliminate bottlenecks and allow employees to concentrate on complex or creative work.

“AI isn’t just a productivity boost,” von Ahn wrote. “It helps us get closer to our mission.”

The company’s move toward more automation reflects a belief that waiting too long to embrace AI could be a missed opportunity. Von Ahn pointed to Duolingo’s early investment in mobile-first design in 2012 as a model. That shift helped the company gain visibility and user adoption, including being named Apple’s iPhone App of the Year in 2013. The decision to go “AI-first” is framed as a similarly forward-looking step.

The transition is expected to take some time. Von Ahn acknowledged that not all systems are ready for full automation and that integrating AI into certain areas, like codebase analysis, could take longer. Nevertheless, he said moving quickly – even if it means accepting occasional setbacks – is more important than waiting for the technology to be fully mature.

By placing AI at the centre of its operations, Duolingo is aiming to deliver more scalable learning experiences and manage internal resources more efficiently. The company plans to provide additional updates as the implementation progresses.

(Photo by Unsplash)

See also: AI in education: Balancing promises and pitfalls

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post Duolingo shifts to AI-first model, cutting contractor roles appeared first on AI News.

]]>
https://www.artificialintelligence-news.com/news/duolingo-shifts-to-ai-first-model-cutting-contractor-roles/feed/ 0
Alarming rise in AI-powered scams: Microsoft reveals $4B in thwarted fraud https://www.artificialintelligence-news.com/news/alarming-rise-in-ai-powered-scams-microsoft-reveals-4-billion-in-thwarted-fraud/ https://www.artificialintelligence-news.com/news/alarming-rise-in-ai-powered-scams-microsoft-reveals-4-billion-in-thwarted-fraud/#respond Thu, 24 Apr 2025 19:01:38 +0000 https://www.artificialintelligence-news.com/?p=105488 AI-powered scams are evolving rapidly as cybercriminals use new technologies to target victims, according to Microsoft’s latest Cyber Signals report. Over the past year, the tech giant says it has prevented $4 billion in fraud attempts, blocking approximately 1.6 million bot sign-up attempts every hour – showing the scale of this growing threat. The ninth […]

The post Alarming rise in AI-powered scams: Microsoft reveals $4B in thwarted fraud appeared first on AI News.

]]>
AI-powered scams are evolving rapidly as cybercriminals use new technologies to target victims, according to Microsoft’s latest Cyber Signals report.

Over the past year, the tech giant says it has prevented $4 billion in fraud attempts, blocking approximately 1.6 million bot sign-up attempts every hour – showing the scale of this growing threat.

The ninth edition of Microsoft’s Cyber Signals report, titled “AI-powered deception: Emerging fraud threats and countermeasures,” reveals how artificial intelligence has lowered the technical barriers for cybercriminals, enabling even low-skilled actors to generate sophisticated scams with minimal effort.

What previously took scammers days or weeks to create can now be accomplished in minutes.

The democratisation of fraud capabilities represents a shift in the criminal landscape that affects consumers and businesses worldwide.

The evolution of AI-enhanced cyber scams

Microsoft’s report highlights how AI tools can now scan and scrape the web for company information, helping cybercriminals build detailed profiles of potential targets for highly-convincing social engineering attacks.

Bad actors can lure victims into complex fraud schemes using fake AI-enhanced product reviews and AI-generated storefronts, which come complete with fabricated business histories and customer testimonials.

According to Kelly Bissell, Corporate Vice President of Anti-Fraud and Product Abuse at Microsoft Security, the threat numbers continue to increase. “Cybercrime is a trillion-dollar problem, and it’s been going up every year for the past 30 years,” per the report.

“I think we have an opportunity today to adopt AI faster so we can detect and close the gap of exposure quickly. Now we have AI that can make a difference at scale and help us build security and fraud protections into our products much faster.”

The Microsoft anti-fraud team reports that AI-powered fraud attacks happen globally, with significant activity originating from China and Europe – particularly Germany, due to its status as one of the largest e-commerce markets in the European Union.

The report notes that the larger a digital marketplace is, the more likely a proportional degree of attempted fraud will occur.

E-commerce and employment scams leading

Two particularly concerning areas of AI-enhanced fraud include e-commerce and job recruitment scams.In the ecommerce space, fraudulent websites can now be created in minutes using AI tools with minimal technical knowledge.

Sites often mimic legitimate businesses, using AI-generated product descriptions, images, and customer reviews to fool consumers into believing they’re interacting with genuine merchants.

Adding another layer of deception, AI-powered customer service chatbots can interact convincingly with customers, delay chargebacks by stalling with scripted excuses, and manipulate complaints with AI-generated responses that make scam sites appear professional.

Job seekers are equally at risk. According to the report, generative AI has made it significantly easier for scammers to create fake listings on various employment platforms. Criminals generate fake profiles with stolen credentials, fake job postings with auto-generated descriptions, and AI-powered email campaigns to phish job seekers.

AI-powered interviews and automated emails enhance the credibility of these scams, making them harder to identify. “Fraudsters often ask for personal information, like resumes or even bank account details, under the guise of verifying the applicant’s information,” the report says.

Red flags include unsolicited job offers, requests for payment and communication through informal platforms like text messages or WhatsApp.

Microsoft’s countermeasures to AI fraud

To combat emerging threats, Microsoft says it has implemented a multi-pronged approach across its products and services. Microsoft Defender for Cloud provides threat protection for Azure resources, while Microsoft Edge, like many browsers, features website typo protection and domain impersonation protection. Edge is noted by the Microsoft report as using deep learning technology to help users avoid fraudulent websites.

The company has also enhanced Windows Quick Assist with warning messages to alert users about possible tech support scams before they grant access to someone claiming to be from IT support. Microsoft now blocks an average of 4,415 suspicious Quick Assist connection attempts daily.

Microsoft has also introduced a new fraud prevention policy as part of its Secure Future Initiative (SFI). As of January 2025, Microsoft product teams must perform fraud prevention assessments and implement fraud controls as part of their design process, ensuring products are “fraud-resistant by design.”

As AI-powered scams continue to evolve, consumer awareness remains important. Microsoft advises users to be cautious of urgency tactics, verify website legitimacy before making purchases, and never provide personal or financial information to unverified sources.

For enterprises, implementing multi-factor authentication and deploying deepfake-detection algorithms can help mitigate risk.

See also: Wozniak warns AI will power next-gen scams

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post Alarming rise in AI-powered scams: Microsoft reveals $4B in thwarted fraud appeared first on AI News.

]]>
https://www.artificialintelligence-news.com/news/alarming-rise-in-ai-powered-scams-microsoft-reveals-4-billion-in-thwarted-fraud/feed/ 0
RAGEN: AI framework tackles LLM agent instability https://www.artificialintelligence-news.com/news/ragen-ai-framework-tackles-llm-agent-instability/ https://www.artificialintelligence-news.com/news/ragen-ai-framework-tackles-llm-agent-instability/#respond Thu, 24 Apr 2025 16:06:47 +0000 https://www.artificialintelligence-news.com/?p=106040 Researchers have introduced RAGEN, an AI framework designed to counter LLM agent instability when handling complex situations. Training these AI agents presents significant hurdles, particularly when decisions span multiple steps and involve unpredictable feedback from the environment. While reinforcement learning (RL) has shown promise in static tasks like solving maths problems or generating code, its […]

The post RAGEN: AI framework tackles LLM agent instability appeared first on AI News.

]]>
Researchers have introduced RAGEN, an AI framework designed to counter LLM agent instability when handling complex situations.

Training these AI agents presents significant hurdles, particularly when decisions span multiple steps and involve unpredictable feedback from the environment. While reinforcement learning (RL) has shown promise in static tasks like solving maths problems or generating code, its application to dynamic, multi-turn agent training has been less explored.   

Addressing this gap, a collaborative team from institutions including Northwestern University, Stanford University, Microsoft, and New York University has proposed StarPO (State-Thinking-Actions-Reward Policy Optimisation).

StarPO offers a generalised approach for training agents at the trajectory level (i.e. it optimises the entire sequence of interactions, not just individual actions.)

Accompanying this is RAGEN, a modular system built to implement StarPO. This enables the training and evaluation of LLM agents, particularly focusing on their reasoning capabilities under RL. RAGEN provides the necessary infrastructure for rollouts, reward assignment, and optimisation within multi-turn, stochastic (randomly determined) environments.

Minimalist environments, maximum insight

To isolate the core learning challenges from confounding factors like extensive pre-existing knowledge or task-specific engineering, the researchers tested LLMs using RAGEN in three deliberately minimalistic, controllable symbolic gaming environments:   

  1. Bandit: A single-turn, stochastic task testing risk-sensitive symbolic reasoning. The agent chooses between options (like ‘Phoenix’ or ‘Dragon’ arms) with different, initially unknown, reward profiles.
  2. Sokoban: A multi-turn, deterministic puzzle requiring foresight and planning, as actions (pushing boxes) are irreversible.
  3. Frozen Lake: A multi-turn, stochastic grid navigation task where movement attempts can randomly fail, demanding planning under uncertainty.

These environments allow for clear analysis of how agents learn decision-making policies purely through interaction.   

Key findings: Stability, rollouts, and reasoning

The study yielded three significant findings concerning the training of self-evolving LLM agents:

The ‘Echo Trap’ and the need for stability

A recurring problem observed during multi-turn RL training was dubbed the “Echo Trap”. Agents would initially improve but then suffer performance collapse, overfitting to locally rewarded reasoning patterns. 

This was marked by collapsing reward variance, falling entropy (a measure of randomness/exploration), and sudden spikes in gradients (indicating training instability). Early signs included drops in reward standard deviation and output entropy.   

To combat this, the team developed StarPO-S, a stabilised version of the framework. StarPO-S incorporates:   

  • Variance-based trajectory filtering: Focusing training on task instances where the agent’s behaviour shows higher uncertainty (higher reward variance), discarding low-variance, less informative rollouts. This improved stability and efficiency.   
  • Critic incorporation: Using methods like PPO (Proximal Policy Optimisation), which employ a ‘critic’ to estimate value, generally showed better stability than critic-free methods like GRPO (Group Relative Policy Optimisation) in most tests.   
  • Decoupled clipping and KL removal: Techniques adapted from other research (DAPO) involving asymmetric clipping (allowing more aggressive learning from positive rewards) and removing KL divergence penalties (encouraging exploration) further boosted stability and performance.   

StarPO-S consistently delayed collapse and improved final task performance compared to vanilla StarPO.   

Rollout quality is crucial

The characteristics of the ‘rollouts’ (simulated interaction trajectories used for training) significantly impact learning. Key factors identified include:   

  • Task diversity: Training with a diverse set of initial states (prompts), but with multiple responses generated per prompt, aids generalisation. The sweet spot seemed to be moderate diversity enabling contrast between different outcomes in similar scenarios.   
  • Interaction granularity: Allowing multiple actions per turn (around 5-6 proved optimal) enables better planning within a fixed turn limit, without introducing the noise associated with excessively long action sequences.   
  • Rollout frequency: Using fresh, up-to-date rollouts that reflect the agent’s current policy is vital. More frequent sampling (approaching an ‘online’ setting) leads to faster convergence and better generalisation by reducing policy-data mismatch.

Maintaining freshness, alongside appropriate action budgets and task diversity, is key for stable training.   

Reasoning requires careful reward design

Simply prompting models to ‘think’ doesn’t guarantee meaningful reasoning emerges, especially in multi-turn tasks. The study found:

  • Reasoning traces helped generalisation in the simpler, single-turn Bandit task, even when symbolic cues conflicted with rewards.   
  • In multi-turn tasks like Sokoban, reasoning benefits were limited, and the length of ‘thinking’ segments consistently declined during training. Agents often regressed to direct action selection or produced “hallucinated reasoning” if rewards only tracked task success, revealing a “mismatch between thoughts and environment states.”

This suggests that standard trajectory-level rewards (often sparse and outcome-based) are insufficient. 

“Without fine-grained, reasoning-aware reward signals, agent reasoning hardly emerge[s] through multi-turn RL.”

The researchers propose that future work should explore rewards that explicitly evaluate the quality of intermediate reasoning steps, perhaps using format-based penalties or rewarding explanation quality, rather than just final outcomes.   

RAGEN and StarPO: A step towards self-evolving AI

The RAGEN system and StarPO framework represent a step towards training LLM agents that can reason and adapt through interaction in complex, unpredictable environments.

This research highlights the unique stability challenges posed by multi-turn RL and offers concrete strategies – like StarPO-S’s filtering and stabilisation techniques – to mitigate them. It also underscores the critical role of rollout generation strategies and the need for more sophisticated reward mechanisms to cultivate genuine reasoning, rather than superficial strategies or hallucinations.

While acknowledging limitations – including the need to test on larger models and optimise for domains without easily verifiable rewards – the work opens “a scalable and principled path for building AI systems” in areas demanding complex interaction and verifiable outcomes, such as theorem proving, software engineering, and scientific discovery.

(Image by Gerd Altmann)

See also: How does AI judge? Anthropic studies the values of Claude

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post RAGEN: AI framework tackles LLM agent instability appeared first on AI News.

]]>
https://www.artificialintelligence-news.com/news/ragen-ai-framework-tackles-llm-agent-instability/feed/ 0
China’s MCP adoption: AI assistants that actually do things https://www.artificialintelligence-news.com/news/chinas-mcp-adoption-ai-assistants-that-actually-do-things/ https://www.artificialintelligence-news.com/news/chinas-mcp-adoption-ai-assistants-that-actually-do-things/#respond Wed, 23 Apr 2025 12:03:11 +0000 https://www.artificialintelligence-news.com/?p=105453 China’s tech companies will drive adoption of the MCP (Model Context Protocol) standard that transforms AI assistants from simple chatbots into powerful digital helpers. MCP works like a universal connector that lets AI assistants interact directly with favourite apps and services – enabling them to make payments, book appointments, check maps, and access information on […]

The post China’s MCP adoption: AI assistants that actually do things appeared first on AI News.

]]>
China’s tech companies will drive adoption of the MCP (Model Context Protocol) standard that transforms AI assistants from simple chatbots into powerful digital helpers.

MCP works like a universal connector that lets AI assistants interact directly with favourite apps and services – enabling them to make payments, book appointments, check maps, and access information on different platforms on users’ behalves.

As reported by the South China Morning Post, companies like Ant Group, Alibaba Cloud, and Baidu are deploying MCP-based services and positioning AI agents as the next step, after chatbots and large language models. But will China’s MCP adoption truly transform the AI landscape, or is it simply another step in the technology’s evolution?

Why China’s MCP adoption matters for AI’s evolution

The Model Context Protocol was initially introduced by Anthropic in November 2024, at the time described as a standard that connects AI agents “to the systems where data lives, including content repositories, business tools and development environments.”

MCP serves as what Ant Group calls a “USB-C port for AI applications” – a universal connector allowing AI agents to integrate with multiple systems.

The standardisation is particularly significant for AI agents like Butterfly Effect’s Manus, which are designed to autonomously perform tasks by creating plans consisting of specific subtasks using available resources.

Unlike traditional chatbots that just respond to queries, AI agents can actively interact with different systems, collect feedback, and incorporate that feedback into new actions.

Chinese tech giants lead the MCP movement

China’s MCP adoption by tech leaders highlights the importance placed on AI agents as the next evolution in artificial intelligence:

  • Ant Group, Alibaba’s fintech affiliate, has unveiled its “MCP server for payment services,” that lets AI agents connect with Alipay’s payment platform. The integration allows users to “easily make payments, check payment statuses and initiate refunds using simple natural language commands,” according to Ant Group’s statement.
  • Additionally, Ant Group’s AI agent development platform, Tbox, now supports deployment of more than 30 MCP services currently on the market, including those for Alipay, Amap Maps, Google MCP, and Amazon Web Services’ knowledge base retrieval server.
  • Alibaba Cloud launched an MCP marketplace through its AI model hosting platform ModelScope, offering more than 1,000 services connecting to mapping tools, office collaboration platforms, online storage services, and various Google services.
  • Baidu, China’s leading search and AI company, has indicated that its support for MCP would foster “abundant use cases for [AI] applications and solutions.”

Beyond chatbots: Why AI agents represent the next frontier

China’s MCP adoption signals a shift in focus from large language models and chatbots to more capable AI agents. As Red Xiao Hong, founder and CEO of Butterfly Effect, described, an AI agent is “more like a human being” compared to how chatbots perform.

The agents not only respond to questions but “interact with the environment, collect feedback and use the feedback as a new prompt.” This distinction is held to be important by companies driving progress in AI.

While chatbots and LLMs can generate text and respond to queries, AI agents can take actions on multiple platforms and services. They represent an advance from the limited capabilities of conventional AI applications toward autonomous systems capable of completing more complex tasks with less human intervention.

The rapid embrace of MCP by Chinese tech companies suggests they view AI agents as a new avenue for innovation and commercial opportunity that go beyond what’s possible with existing chatbots and language models.

China’s MCP adoption could position its tech companies at the forefront of practical AI implementation. By creating standardised ways for AI agents to interact with services, Chinese companies are building ecosystems where AI could deliver more comprehensive experiences.

Challenges and considerations of China’s MCP adoption

Despite the developments in China’s MCP adoption, several factors may influence the standard’s longer-term impact:

  1. International standards competition. While Chinese tech companies are racing to implement MCP, its global success depends on widespread adoption. Originally developed by Anthropic, the protocol faces potential competition from alternative standards that might emerge from other major AI players like OpenAI, Google, or Microsoft.
  2. Regulatory environments. As AI agents gain more autonomy in performing tasks, especially those involving payments and sensitive user data, regulatory scrutiny will inevitably increase. China’s regulatory landscape for AI is still evolving, and how authorities respond to these advancements will significantly impact MCP’s trajectory.
  3. Security and privacy. The integration of AI agents with multiple systems via MCP creates new potential vulnerabilities. Ensuring robust security measures across all connected platforms will be important for maintaining user trust.
  4. Technical integration challenges. While the concept of universal connectivity is appealing, achieving integration across diverse systems with varying architectures, data structures, and security protocols presents significant technical challenges.

The outlook for China’s AI ecosystem

China’s MCP adoption represents a strategic bet on AI agents as the next evolution in artificial intelligence. If successful, it could accelerate the practical implementation of AI in everyday applications, potentially transforming how users interact with digital services.

As Red Xiao Hong noted, AI agents are designed to interact with their environment in ways that more closely resemble human behaviour than traditional AI applications. The capacity for interaction and adaptation could be what finally bridges the gap between narrow AI tools and the more generalised assistants that tech companies have long promised.

See also: Manus AI agent: breakthrough in China’s agentic AI

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post China’s MCP adoption: AI assistants that actually do things appeared first on AI News.

]]>
https://www.artificialintelligence-news.com/news/chinas-mcp-adoption-ai-assistants-that-actually-do-things/feed/ 0
Meta will train AI models using EU user data https://www.artificialintelligence-news.com/news/meta-will-train-ai-models-using-eu-user-data/ https://www.artificialintelligence-news.com/news/meta-will-train-ai-models-using-eu-user-data/#respond Tue, 15 Apr 2025 16:32:02 +0000 https://www.artificialintelligence-news.com/?p=105325 Meta has confirmed plans to utilise content shared by its adult users in the EU (European Union) to train its AI models. The announcement follows the recent launch of Meta AI features in Europe and aims to enhance the capabilities and cultural relevance of its AI systems for the region’s diverse population.    In a statement, […]

The post Meta will train AI models using EU user data appeared first on AI News.

]]>
Meta has confirmed plans to utilise content shared by its adult users in the EU (European Union) to train its AI models.

The announcement follows the recent launch of Meta AI features in Europe and aims to enhance the capabilities and cultural relevance of its AI systems for the region’s diverse population.   

In a statement, Meta wrote: “Today, we’re announcing our plans to train AI at Meta using public content – like public posts and comments – shared by adults on our products in the EU.

“People’s interactions with Meta AI – like questions and queries – will also be used to train and improve our models.”

Starting this week, users of Meta’s platforms (including Facebook, Instagram, WhatsApp, and Messenger) within the EU will receive notifications explaining the data usage. These notifications, delivered both in-app and via email, will detail the types of public data involved and link to an objection form.

“We have made this objection form easy to find, read, and use, and we’ll honor all objection forms we have already received, as well as newly submitted ones,” Meta explained.

Meta explicitly clarified that certain data types remain off-limits for AI training purposes.

The company says it will not “use people’s private messages with friends and family” to train its generative AI models. Furthermore, public data associated with accounts belonging to users under the age of 18 in the EU will not be included in the training datasets.

Meta wants to build AI tools designed for EU users

Meta positions this initiative as a necessary step towards creating AI tools designed for EU users. Meta launched its AI chatbot functionality across its messaging apps in Europe last month, framing this data usage as the next phase in improving the service.

“We believe we have a responsibility to build AI that’s not just available to Europeans, but is actually built for them,” the company explained. 

“That means everything from dialects and colloquialisms, to hyper-local knowledge and the distinct ways different countries use humor and sarcasm on our products.”

This becomes increasingly pertinent as AI models evolve with multi-modal capabilities spanning text, voice, video, and imagery.   

Meta also situated its actions in the EU within the broader industry landscape, pointing out that training AI on user data is common practice.

“It’s important to note that the kind of AI training we’re doing is not unique to Meta, nor will it be unique to Europe,” the statement reads. 

“We’re following the example set by others including Google and OpenAI, both of which have already used data from European users to train their AI models.”

Meta further claimed its approach surpasses others in openness, stating, “We’re proud that our approach is more transparent than many of our industry counterparts.”   

Regarding regulatory compliance, Meta referenced prior engagement with regulators, including a delay initiated last year while awaiting clarification on legal requirements. The company also cited a favourable opinion from the European Data Protection Board (EDPB) in December 2024.

“We welcome the opinion provided by the EDPB in December, which affirmed that our original approach met our legal obligations,” wrote Meta.

Broader concerns over AI training data

While Meta presents its approach in the EU as transparent and compliant, the practice of using vast swathes of public user data from social media platforms to train large language models (LLMs) and generative AI continues to raise significant concerns among privacy advocates.

Firstly, the definition of “public” data can be contentious. Content shared publicly on platforms like Facebook or Instagram may not have been posted with the expectation that it would become raw material for training commercial AI systems capable of generating entirely new content or insights. Users might share personal anecdotes, opinions, or creative works publicly within their perceived community, without envisaging its large-scale, automated analysis and repurposing by the platform owner.

Secondly, the effectiveness and fairness of an “opt-out” system versus an “opt-in” system remain debatable. Placing the onus on users to actively object, often after receiving notifications buried amongst countless others, raises questions about informed consent. Many users may not see, understand, or act upon the notification, potentially leading to their data being used by default rather than explicit permission.

Thirdly, the issue of inherent bias looms large. Social media platforms reflect and sometimes amplify societal biases, including racism, sexism, and misinformation. AI models trained on this data risk learning, replicating, and even scaling these biases. While companies employ filtering and fine-tuning techniques, eradicating bias absorbed from billions of data points is an immense challenge. An AI trained on European public data needs careful curation to avoid perpetuating stereotypes or harmful generalisations about the very cultures it aims to understand.   

Furthermore, questions surrounding copyright and intellectual property persist. Public posts often contain original text, images, and videos created by users. Using this content to train commercial AI models, which may then generate competing content or derive value from it, enters murky legal territory regarding ownership and fair compensation—issues currently being contested in courts worldwide involving various AI developers.

Finally, while Meta highlights its transparency relative to competitors, the actual mechanisms of data selection, filtering, and its specific impact on model behaviour often remain opaque. Truly meaningful transparency would involve deeper insights into how specific data influences AI outputs and the safeguards in place to prevent misuse or unintended consequences.

The approach taken by Meta in the EU underscores the immense value technology giants place on user-generated content as fuel for the burgeoning AI economy. As these practices become more widespread, the debate surrounding data privacy, informed consent, algorithmic bias, and the ethical responsibilities of AI developers will undoubtedly intensify across Europe and beyond.

(Photo by Julio Lopez)

See also: Apple AI stresses privacy with synthetic and anonymised data

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post Meta will train AI models using EU user data appeared first on AI News.

]]>
https://www.artificialintelligence-news.com/news/meta-will-train-ai-models-using-eu-user-data/feed/ 0
Apple AI stresses privacy with synthetic and anonymised data https://www.artificialintelligence-news.com/news/apple-leans-on-synthetic-data-to-upgrade-ai-privately/ https://www.artificialintelligence-news.com/news/apple-leans-on-synthetic-data-to-upgrade-ai-privately/#respond Tue, 15 Apr 2025 08:58:08 +0000 https://www.artificialintelligence-news.com/?p=105319 Apple is taking a new approach to training its AI models – one that avoids collecting or copying user content from iPhones or Macs. According to a recent blog post, the company plans to continue to rely on synthetic data (constructed data that is used to mimic user behaviour) and differential privacy to improve features […]

The post Apple AI stresses privacy with synthetic and anonymised data appeared first on AI News.

]]>
Apple is taking a new approach to training its AI models – one that avoids collecting or copying user content from iPhones or Macs.

According to a recent blog post, the company plans to continue to rely on synthetic data (constructed data that is used to mimic user behaviour) and differential privacy to improve features like email summaries, without gaining access to personal emails or messages.

For users who opt in to Apple’s Device Analytics program, the company’s AI models will compare synthetic email-like messages against a small sample of a real user’s content stored locally on the device. The device then identifies which of the synthetic messages most closely matches its user sample, and sends information about the selected match back to Apple. No actual user data leaves the device, and Apple says it receives only aggregated information.

The technique will allow Apple to improve its models for longer-form text generation tasks without collecting real user content. It’s an extension of the company’s long-standing use of differential privacy, which introduces randomised data into broader datasets to help protect individual identities. Apple has used this method since 2016 to understand use patterns, in line with the company’s safeguarding policies.

Improving Genmoji and other Apple Intelligence features

The company already uses differential privacy to improve features like Genmoji, where it collects general trends about which prompts are most popular without linking any prompt with a specific user or device. In upcoming releases, Apple plans to apply similar methods to other Apple Intelligence features, including Image Playground, Image Wand, Memories Creation, and Writing Tools.

For Genmoji, the company anonymously polls participating devices to determine whether specific prompt fragments have been seen. Each device responds with a noisy signal – some responses reflect actual use, while others are randomised. The approach ensures that only widely-used terms become visible to Apple, and no individual response can be traced back to a user or device, the company says.

Curating synthetic data for better email summaries

While the above method has worked well with respect to short prompts, Apple needed a new approach for more complex tasks like summarising emails. For this, Apple generates thousands of sample messages, and these synthetic messages are converted into numerical representations, or ’embeddings,’ based on language, tone, and topic. Participating user devices then compare the embeddings to locally stored samples. Again, only the selected match is shared, not the content itself.

Apple collects the most frequently-selected synthetic embeddings from participating devices and uses them to refine its training data. Over time, this process allows the system to generate more relevant and realistic synthetic emails, helping Apple to improve its AI outputs for summarisation and text generation without apparent compromise of user privacy.

Available in beta

Apple is rolling out the system in beta versions of iOS 18.5, iPadOS 18.5, and macOS 15.5. According to Bloomberg’s Mark Gurman, Apple is attempting to address challenges with its AI development in this way, problems which have included delayed feature rollouts and the fallout from leadership changes in the Siri team.

Whether its approach will yield more useful AI outputs in practice remains to be seen, but it signals a clear public effort to balance user privacy with model performance.

(Photo by Unsplash)

See also: ChatGPT got another viral moment with ‘AI action figure’ trend

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post Apple AI stresses privacy with synthetic and anonymised data appeared first on AI News.

]]>
https://www.artificialintelligence-news.com/news/apple-leans-on-synthetic-data-to-upgrade-ai-privately/feed/ 0
DolphinGemma: Google AI model understands dolphin chatter https://www.artificialintelligence-news.com/news/dolphingemma-google-ai-model-understands-dolphin-chatter/ https://www.artificialintelligence-news.com/news/dolphingemma-google-ai-model-understands-dolphin-chatter/#respond Mon, 14 Apr 2025 14:18:49 +0000 https://www.artificialintelligence-news.com/?p=105315 Google has developed an AI model called DolphinGemma to decipher how dolphins communicate and one day facilitate interspecies communication. The intricate clicks, whistles, and pulses echoing through the underwater world of dolphins have long fascinated scientists. The dream has been to understand and decipher the patterns within their complex vocalisations. Google, collaborating with engineers at […]

The post DolphinGemma: Google AI model understands dolphin chatter appeared first on AI News.

]]>
Google has developed an AI model called DolphinGemma to decipher how dolphins communicate and one day facilitate interspecies communication.

The intricate clicks, whistles, and pulses echoing through the underwater world of dolphins have long fascinated scientists. The dream has been to understand and decipher the patterns within their complex vocalisations.

Google, collaborating with engineers at the Georgia Institute of Technology and leveraging the field research of the Wild Dolphin Project (WDP), has unveiled DolphinGemma to help realise that goal.

Announced around National Dolphin Day, the foundational AI model represents a new tool in the effort to comprehend cetacean communication. Trained specifically to learn the structure of dolphin sounds, DolphinGemma can even generate novel, dolphin-like audio sequences.

Over decades, the Wild Dolphin Project – operational since 1985 – has run the world’s longest continuous underwater study of dolphins to develop a deep understanding of context-specific sounds, such as:

  • Signature “whistles”: Serving as unique identifiers, akin to names, crucial for interactions like mothers reuniting with calves.
  • Burst-pulse “squawks”: Commonly associated with conflict or aggressive encounters.
  • Click “buzzes”: Often detected during courtship activities or when dolphins chase sharks.

WDP’s ultimate goal is to uncover the inherent structure and potential meaning within these natural sound sequences, searching for the grammatical rules and patterns that might signify a form of language.

This long-term, painstaking analysis has provided the essential grounding and labelled data crucial for training sophisticated AI models like DolphinGemma.

DolphinGemma: The AI ear for cetacean sounds

Analysing the sheer volume and complexity of dolphin communication is a formidable task ideally suited for AI.

DolphinGemma, developed by Google, employs specialised audio technologies to tackle this. It uses the SoundStream tokeniser to efficiently represent dolphin sounds, feeding this data into a model architecture adept at processing complex sequences.

Based on insights from Google’s Gemma family of lightweight, open models (which share technology with the powerful Gemini models), DolphinGemma functions as an audio-in, audio-out system.

Fed with sequences of natural dolphin sounds from WDP’s extensive database, DolphinGemma learns to identify recurring patterns and structures. Crucially, it can predict the likely subsequent sounds in a sequence—much like human language models predict the next word.

With around 400 million parameters, DolphinGemma is optimised to run efficiently, even on the Google Pixel smartphones WDP uses for data collection in the field.

As WDP begins deploying the model this season, it promises to accelerate research significantly. By automatically flagging patterns and reliable sequences previously requiring immense human effort to find, it can help researchers uncover hidden structures and potential meanings within the dolphins’ natural communication.

The CHAT system and two-way interaction

While DolphinGemma focuses on understanding natural communication, a parallel project explores a different avenue: active, two-way interaction.

The CHAT (Cetacean Hearing Augmentation Telemetry) system – developed by WDP in partnership with Georgia Tech – aims to establish a simpler, shared vocabulary rather than directly translating complex dolphin language.

The concept relies on associating specific, novel synthetic whistles (created by CHAT, distinct from natural sounds) with objects the dolphins enjoy interacting with, like scarves or seaweed. Researchers demonstrate the whistle-object link, hoping the dolphins’ natural curiosity leads them to mimic the sounds to request the items.

As more natural dolphin sounds are understood through work with models like DolphinGemma, these could potentially be incorporated into the CHAT interaction framework.

Google Pixel enables ocean research

Underpinning both the analysis of natural sounds and the interactive CHAT system is crucial mobile technology. Google Pixel phones serve as the brains for processing the high-fidelity audio data in real-time, directly in the challenging ocean environment.

The CHAT system, for instance, relies on Google Pixel phones to:

  • Detect a potential mimic amidst background noise.
  • Identify the specific whistle used.
  • Alert the researcher (via underwater bone-conducting headphones) about the dolphin’s ‘request’.

This allows the researcher to respond quickly with the correct object, reinforcing the learned association. While a Pixel 6 initially handled this, the next generation CHAT system (planned for summer 2025) will utilise a Pixel 9, integrating speaker/microphone functions and running both deep learning models and template matching algorithms simultaneously for enhanced performance.

Google Pixel 9 phone that will be used for the next generation DolphinGemma CHAT system.

Using smartphones like the Pixel dramatically reduces the need for bulky, expensive custom hardware. It improves system maintainability, lowers power requirements, and shrinks the physical size. Furthermore, DolphinGemma’s predictive power integrated into CHAT could help identify mimics faster, making interactions more fluid and effective.

Recognising that breakthroughs often stem from collaboration, Google intends to release DolphinGemma as an open model later this summer. While trained on Atlantic spotted dolphins, its architecture holds promise for researchers studying other cetaceans, potentially requiring fine-tuning for different species’ vocal repertoires..

The aim is to equip researchers globally with powerful tools to analyse their own acoustic datasets, accelerating the collective effort to understand these intelligent marine mammals. We are shifting from passive listening towards actively deciphering patterns, bringing the prospect of bridging the communication gap between our species perhaps just a little closer.

See also: IEA: The opportunities and challenges of AI for global energy

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post DolphinGemma: Google AI model understands dolphin chatter appeared first on AI News.

]]>
https://www.artificialintelligence-news.com/news/dolphingemma-google-ai-model-understands-dolphin-chatter/feed/ 0
ChatGPT got another viral moment with ‘AI action figure’ trend https://www.artificialintelligence-news.com/news/chatgpt-got-another-viral-moment-with-ai-action-figure-trend/ https://www.artificialintelligence-news.com/news/chatgpt-got-another-viral-moment-with-ai-action-figure-trend/#respond Mon, 14 Apr 2025 11:19:31 +0000 https://www.artificialintelligence-news.com/?p=105304 ChatGPT’s image generation feature has sparked a new wave of personalised digital creations, with LinkedIn users leading a trend of turning themselves into action figures. The craze began picking up momentum after the viral Studio Ghibli-style portraits sees users sharing images of themselves as boxed dolls – complete with accessories and job-themed packaging. There are […]

The post ChatGPT got another viral moment with ‘AI action figure’ trend appeared first on AI News.

]]>
ChatGPT’s image generation feature has sparked a new wave of personalised digital creations, with LinkedIn users leading a trend of turning themselves into action figures.

The craze began picking up momentum after the viral Studio Ghibli-style portraits sees users sharing images of themselves as boxed dolls – complete with accessories and job-themed packaging.

There are several variations in the latest wave of AI-generated self-representation. The most common format is similar to a traditional action figure or Barbie doll, with props like coffee mugs, books, and laptops reflecting users’ professional lives. The images are designed to resemble toy store displays, complete with bold taglines and personalised packaging.

The movement gained initial attention on LinkedIn, where professionals used the format to showcase their brand identities more playfully. The “AI Action Figure” format, in particular, resonated with marketers, consultants, and others looking to present themselves as standout figures – literally. Popularity of the service has since trickled into other platforms including Instagram, TikTok, and Facebook, though engagement remains largely centred around LinkedIn.

ChatGPT’s image tool – part of its GPT-4o release – serves as the engine. Users upload a high-resolution photo of themselves, usually full-body, with a custom prompt describing how the final image should look. Details frequently include the person’s name, accessories, outfit styles, and package details. Some opt for a nostalgic “Barbiecore” vibe with pink tones and sparkles, while others stick to a corporate design that reflects their day job.

Refinements are common. Many users go through multiple image generations, changing accessories and rewording prompts until the figure matches their wanted personality or profession. The result is a glossy, toy-style portrait that crosses the line between humour and personal branding.

While the toy-style trend hasn’t seen the same viral reach as the Ghibli portrait craze, it has still sparked a steady flow of content across platforms. Hashtags like #AIBarbie and #BarbieBoxChallenge have gained traction, and some brands – including Mac Cosmetics and NYX – were quick to participate. A few public figures have joined in too, most notably US Representative Marjorie Taylor Greene, who shared a doll version of herself featuring accessories like a Bible and gavel.

Regardless of the buzz, engagement levels are different. Many posts receive limited interaction, and most well-known influencers have avoided the trend. Nevertheless, it highlights ChatGPT’s growing presence in mainstream online culture, and its ability to respond to users’ creativity using relatively simple tools.

The is not the first time ChatGPT’s image generation tool has overwhelmed the platform. When the Ghibli-style portraits first went viral, demand spiked so dramatically that OpenAI temporarily limited image generation for free accounts. CEO Sam Altman later described the surge in users as “biblical demand,” noting a dramatic rise in daily active users and infrastructure stress.

The Barbie/action figure trend, though at a smaller scale, follows that same path – using ChatGPT’s simple interface and its growing popularity as a creative tool. As with other viral AI visuals, the trend has also raised broader conversations about identity, aesthetics, and self-presentation in digital spaces. However, unlike the Ghibli portrait craze, it hasn’t attracted much criticism – at least not yet.

The format’s appeal lies in its simplicity. It offers users a way to engage with AI-generated art without needing technical skills, and satisfies an urge for of self-expression. The result is something like part professional head-shot, part novelty toy, and part visual joke, making it a surprisingly versatile format for social media sharing.

While some may see the toy model phenomenon as a gimmick, others view it as a window into what’s possible when AI tools are placed directly in users’ hands.

For now, whether it’s a mini-me holding a coffee mug or a Barbie-style figure ready for the toy shelf, ChatGPT is again changing how people choose to represent themselves in the digital age.

(Photo by Unsplash)

See also: ChatGPT hits record usage after viral Ghibli feature – Here are four risks to know first

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post ChatGPT got another viral moment with ‘AI action figure’ trend appeared first on AI News.

]]>
https://www.artificialintelligence-news.com/news/chatgpt-got-another-viral-moment-with-ai-action-figure-trend/feed/ 0