TechForge

January 24, 2019

Share this story:

Tags:

Categories::

  • There have been over 154,000 AI patents filed worldwide since 2010 with the majority being in health fields (29.5%), Industry-specific solutions (25.3%) and AI-based digital security (15.7%).
  • AI-based marketing patents are the fasting growing global category, reaching a compound annual growth rate (CAGR) of 29.3% between 2010 and 2018.
  • The second- and third-fastest growing global AI patent categories between 2010 and 2018 are AI-based digital security (23.4% CAGR) and AI-based mobility (23% CAGR).
  • 79,936 patents were filed in the United States between 2010 and 2018, with the majority being in the health field (32.6%) followed by Industry-specific solutions (20.5%) and AI-based digital security (18%).
  • Machine learning dominates the AI patent landscape today, leading all categories of AI patents including deep learning and neural networks.

These and many other insights are from an excellent presentation recently given by Kai Gramke, Managing Director of EconSight titled Artificial Intelligence As A Key Technology and Driver of Technological Progress. EconSight clients include the Swiss Federal Council, German Federal Chancellery, leading European think tanks, research institutes and half of the German DAX-30 companies.  The presentation and information shared in this post were generated using the PatentSight analytics platform. PatentSight is a LexisNexis company and you can learn more about them here.  The following are the key takeaways from Kai’s recent research and presentation using PatentSight:

EconSight finds that Microsoft leads the AI patent race going into 2019 with 697 world class patents that the firm classifies as having a significant competitive impact as of November 2018

Out of the top 30 companies and research institutions as defined by EconSight in their recent analysis, Microsoft has created 20% of all patents in the global group of patent-producing companies and institutions. The following graphic provides a comparison of the top 3o in the group. Please click on the graphic to expand it for easier reading.


Machine learning dominates the AI patent landscape today, leading all categories of AI patents including deep learning and neural networks

Machine learning is based on the foundational concepts of Bayesian analysis, data mining, and predictive analytics. Machine learning algorithms and the applications they rely on are designed to find patterns in large-scale data sets, while also being able to solve complex, constraint-based problems by learning from the data.  Enterprise software companies including Microsoft, SAP, and others are actively developing AI technologies that integrate into their existing platforms, streamlining adoption across their many customers. Please click on the graphic to expand for easier reading.

There have been 225,833 AI-based patents filed globally since 2000, with 30.7% being industry specific (Industry 4.0 on the graphic below) followed by health-related patents (28.1%) 

13.8% of all AI-based patents are for digital security and 11.9% for energy. It’s interesting to note that the fastest growing patents between 2000 and 2018 are for applying AI to marketing (22% CAGR) and AI-based digital security (18.8% CAGR). Please click on the graphic to expand for easier reading.

Interested in hearing industry leaders discuss subjects like this and their use cases? Attend the co-located AI & Big Data Expo events with upcoming shows in Silicon Valley, London, and Amsterdam to learn more. Co-located with the IoT Tech Expo, Blockchain Expo, and Cyber Security & Cloud Expo.

About the Author

Principal

Related

May 2, 2025

May 2, 2025

May 1, 2025

May 1, 2025

Join our Community

Subscribe now to get all our premium content and latest tech news delivered straight to your inbox

Popular

30106 view(s)
8182 view(s)
7563 view(s)
7337 view(s)

Subscribe

All our premium content and latest tech news delivered straight to your inbox

This field is for validation purposes and should be left unchanged.